好玩的人工智能
快乐的深度学习

tensorflow 张量含义 shape

张量的阶、形状、数据类型

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

    t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用’t[i, j, k]’来访问其中的任何元素.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量(大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵(数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ….

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

形状 维数 实例
0 [ ] 0-D 一个 0维张量. 一个纯量.
1 [D0] 1-D 一个1维张量的形式[5].
2 [D0, D1] 2-D 一个2维张量的形式[3, 4].
3 [D0, D1, D2] 3-D 一个3维张量的形式 [1, 4, 3].
n [D0, D1, … Dn] n-D 一个n维张量的形式 [D0, D1, … Dn].

shape [2,3] 表示为数组的意思是第一维有两个元素,第二维有三个元素,如: [[1,2,3],[4,5,6]]

# 2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) =[[1. 2. 3.]
[4. 5. 6.]]
# 2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) =[[7. 8.]
[9. 10.]
[11. 12.]]
c = tf.matmul(a, b) => [[58 64]
[139 154]]

# 3-D tensor `a`
a = tf.constant(np.arange(1,13), shape=[2, 2, 3]) =[[[ 1. 2. 3.]
[ 4. 5. 6.]],
[[ 7. 8. 9.]
[10. 11. 12.]]]

# 3-D tensor `b`
b = tf.constant(np.arange(13,25), shape=[2, 3, 2]) =[[[13. 14.]
[15. 16.]
[17. 18.]],
[[19. 20.]
[21. 22.]
[23. 24.]]]
c = tf.matmul(a, b) = [[[ 94 100]
[229 244]],
[[508 532]
[697 730]]]

 

tensorflow中有一类在tensor的某一维度上求值的函数,

如:

求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)

求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

参数(1)input_tensor:待求值的tensor。

参数(2)reduction_indices:在哪一维上求解。

参数(3)(4)可忽略

举例说明:

x = tf.constant([1,2,3,4,5,6],shape=[3,2])

 

x是一个二维数组,也就是三行两列

>> print sess.run(x)
[[1 2]
[3 4]
[5 6]]

>> print sess.run(tf.reduce_mean(x))
3
>>> print sess.run(tf.reduce_mean(x, 0))
[3 4]

>> print sess.run(tf.reduce_mean(x, 1))
[1 3 5]

 

未经允许不得转载:零点智能 » tensorflow 张量含义 shape
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

零点智能 人工智能社区,加Q群:469331966

投稿&建议&加Q群